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Abstract

In this paper we prove a new recurrence relation on the van der Waerden
numbers, w(r, k). In particular, if p is a prime and p ≤ k then w(r, k) >

p ·
(
w
(
r −

⌈
r
p

⌉
, k
)
− 1
)
. This recurrence gives the lower bound w(r, p+ 1) >

pr−12p when r ≤ p, which generalizes Berlekamp’s theorem on 2-colorings, and
gives the best known bound for a large interval of r. The recurrence can also be
used to construct explicit valid colorings, and it improves known lower bounds
on small van der Waerden numbers.

1 Introduction and History

In 1927, van der Waerden proved that for any positive integers r and k there exists an
N = w(r, k) such that every r-coloring of {1, 2, 3, . . . , N} contains a monochromatic
arithmetic progression of length k. As a central function in Ramsey theory and a
notoriously difficult one to understand, the growth rate of w(r, k) has received much
attention.

Van der Waerden’s initial proof gives a monstrous upper bound. In the slowest-
growing case, when r = 2, still the bound is w(2, k) ≤ A(n), where A(n) is the
Ackerman function. The best known general upper bound is due to Gowers [9], who
proved

w(r, k) ≤ 22r
22

k+9

.
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In [11] Graham and Solymosi improved this in the case when k = 3, which in a series
of follow-up papers by Bourgain [4], Sanders [16] and Bloom [3] further improved the
upper bound to

w(r, 3) ≤ 2cr(ln r)4

where c > 0 is an absolute constant. Graham currently offers 1,000 USD for an
answer as to whether or not w(2, k) < 2k2 .

In 1953, Erdős and and Rado [7] proved the lower bound√
2(k − 1)rk−1 ≤ w(r, k)

using a simple counting argument. In 1960, Moser [14] used a constructive approach
to improve this bound in the case that r is large relative to k. In particular, he showed
that

(k − 1)rC ln(r) < w(r, k)

for some absolute constant C. Two years later Schmidt [17] used a nonconstructive
approach to prove a bound that is asymptotically better in k. He showed that that
there is some absolute constant c for which

rk−c
√

k ln(k) ≤ w(r, k).

In 1968, Berlekamp used an algebraic approach to construct what is still the best
known lower bound for the case when k = p + 1, where p is a prime, and r = 2. He
showed that

p2p < w(2, p + 1).

In this paper we use a construction to generalize this result to the following.

Theorem 2.2. If p is any prime with 2 ≤ r ≤ p ≤ k, then

pr−12p < w(r, p + 1).

This generalizes Berlekamp’s theorem [2].

In 1973, Erdős and Lovász [6] used the Lovász Local Lemma on hypergraphs to
show that

rk−1

4k

(
1− 1

k

)
≤ w(r, k).

In this paper we will use a recurrence to generalize Berlekamp’s result to arbitrary
number of colors. Our work will also improve bounds on small van der Waerden
numbers. Finally, our bound is recursively-constructive, in that an explicit coloring
when r = 2 can be used create explicit colorings for larger r.
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The current best known general lower bound of this type is due to Kozik and
Shabanov [18], who in 2016 proved

c · rk−1 ≤ w(r, k)

for some absolute constant c > 0.

For large r � k, the best result, by O’Bryant, can be obtained by using the
Hypergraph Symmetry Theorem and the Behrend-type results about sets of integers
without long progressions (see [15]):

w(r, k) > ef(k)(ln r)dlog2 ke

where f(k) is a function of k. The above bound can be found in [5] and is best known
for large r � k.

There are now constructive approaches to the Lovász Local Lemma (see [8]), which
can be used to produce explicit constructions with high probability. Therefore, in a
sense, the above two bounds can also be considered constructive.

In the following section we establish a recursive lower bound for w(r, k), which
is used to deduce our main result. In Section 4 we use this recurrence relation to
improve known numerical lower bounds for some small values of r and k.

2 Proof of the Main Theorem

Definition 2.1. Let Rr represent the set of colors {1, 2, . . . , r}. For each i ∈ Rr,
define Si(r, k) to be the p-tuple

Si(r, k) = (i, i + 1, i + 2, . . . , r, 1, 2, 3, . . . , r, 1, 2, . . . ),

where p is the largest prime such that p ≤ k.

For example,

S1(5, 11) = (1, 2, 3, 4, 5, 1, 2, 3, 4, 5, 1)

S2(5, 11) = (2, 3, 4, 5, 1, 2, 3, 4, 5, 1, 2)

S3(5, 11) = (3, 4, 5, 1, 2, 3, 4, 5, 1, 2, 3)

S4(5, 11) = (4, 5, 1, 2, 3, 4, 5, 1, 2, 3, 4)

S5(5, 11) = (5, 1, 2, 3, 4, 5, 1, 2, 3, 4, 5).

Note that, among these, only S1(5, 11) has the property that i is in a position
congruent to i (mod 5).
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Definition 2.2. Here are some basic definitions.

• A color c’s index positions with a tuple Si(r, k) are the set of its positions within
that tuple.

• The tuples Si(r, k) are sometimes called a block.

• The acronym k-TMAP is short for a k-term monochromatic arithmetic progres-
sion.

• If x1, x2, . . . , xk is an arithmetic progression, then the common value xi+1 − xi

is called the common difference.

• For a fixed k and r, a valid r-coloring of {1, 2, 3, . . . , n} is one which contains
no k-TMAP.

Note that if you know the index positions of a color c ∈ Rr, then you can determine
which of the r distinct tuples Si(r, k) it is in. For instance, if c is in index positions
congruent to 2 (mod r), then it must be in the tuple Sc−1(r, k). This works in general
because within a fixed tuple all index positions for c fall into the same residue class
(mod r), and among the r different tuples Si(r, k), the color c falls into each residue
class exactly once.

Lemma 2.1. Fix an r and k and let p be the largest prime such that p ≤ k. We can
choose (r − d r

p
e) distinct Si(r, k)’s such that the concatenation T of any ordering of

these tuples has the property that any k-TMAP in T has common difference divisible
by p.

Proof. This proof is best understood when split into two cases.

Case 1: Assume r ≤ p. Given any collection of the blocks

S2(r, k), S3(r, k), . . . , Sr(r, k),

each included with any multiplicity, let T be the concatenation of any ordering of
these blocks. Suppose (x1, x2, . . . , xk) is a k-TMAP in T of color c. If some xi and xj

have difference xj − xi = d ≡ 0(mod p), then by the primality of p we may conclude
that the k-TMAP has common difference divisible by p, and hence we are done.

Therefore, we may now assume the common difference is not congruent to 0 (mod
p), which implies that the index positions of (x1, x2, . . . , xk) must be distinct (mod
p), and hence span every possible index position. However, for this to be possible,
some element would have to be in an index position congruent to c (mod p), meaning
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it is inside of the tuple S1(r, k). But since we initially excluded this tuple, this is a
contradiction.

Case 2: Assume r > p. The construction of T from Case 1 is no longer suffi-
cient; by attempting to use that construction we could still conclude that a k-TMAP
(x1, x2, . . . , xk) of some color c and with common difference d 6≡ 0 (mod p) must con-
tain index positions from p different residue classes (mod p). However, since p < r,
each tuple no longer contains every color. Therefore removing one tuple does not
guarantee that we have removed the color c, and if we did not remove this color
then c still appears in index positions in all residue classes. If we remove d r

p
e block

types, though, we can again guarantee that each color’s index positions appear in at
most p− 1 conjugacy classes, preventing a monochromatic progression in that color.
Indeed, if we consider a concatenated tuple T of all Si(r, k)’s except for those of the
form S1+pm(r, k) where m ∈ {0, 1, . . . , d r

p
e − 1}, then this leaves behind (r − d r

p
e)

Si(r, k)’s to build T from, and with this the same argument follows as for Case 1.

Theorem 2.1. We have the recurrence that, for r ≥ 2,

w(r, k) > p

(
w

(
r −

⌈
r

p

⌉
, k

)
− 1

)
,

where p is the largest prime such that p ≤ k.

Proof. By the definition of w(r−d r
p
e, k), there exists an (r−d r

p
e)-coloring of {1, 2, . . . , w(r−

d r
p
e, k)−1} containing no k-TMAP. We now “blow up” this coloring by replacing each

color i with the block Si(r, k); that is, we now have a coloring of{
1, 2, . . . , p ·

(
w

(
r −

⌈
r

p

⌉
, k

)
− 1

)}
,

where if before ci was the color of i, then now the colors of the integers

pi, pi + 1, . . . , pi + p− 1

match the values of Sci(r, k).

We now invoke Lemma 2.1 to see that the only k-TMAP that can exist in this
coloring are those with common difference d ≡ 0 (mod p). Suppose such an arithmetic
progression (x1, x2, . . . , xk) has common difference mp and is in color c. Then we can
see that any two terms of this arithmetic progression must be the same color and
in the same index position as each other, in their respective blocks; in particular,
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this implies that all blocks containing an xi must be of the same block-type S`(r, k).
Consider now the progression (x′1, x

′
2, . . . , x

′
k) in the original valid coloring of{

1, 2, . . . , w

(
r −

⌈
r

p

⌉
, k

)
− 1

}
,

where x′i = t if xi was in the tth block in the blown up coloring. Notice that
(x′1, x

′
2, . . . , x

′
k) is an arithmetic progression with common difference m, and is more-

over monochromatic of color `.

This is a contradiction to our assumption that we originally chose an (r − d r
p
e)-

coloring of {1, 2, . . . , w(r − d r
p
e, k)− 1} containing no k-TMAP.

Notice that when p > r that each Si(r, k) contains at least b r
p
c elements of each

color. This means that when we remove one of these block types, we remove at least
b r
p
c index positions, and so we have no more than p − b r

p
c possible index positions

that any color might be in. We can therefore make the recursion of Theorem 2.1
stronger by choosing a larger prime p such that p− b r

p
c < k. This means that when

we have blocks of this larger size p and remove one block type, we are still left with
fewer than k possible index positions for elements to be in, ensuring that the proof
of Theorem 2.1 still holds.

Corollary 2.1. Fix k and let p be the largest prime less than or equal to k. For
r ∈ {1, 2, 3, 4, . . . , p} we can recursively construct r-colorings of size

pr−1(k − 1)

containing no k-TMAPs.

Proof. Begin with k − 1 consecutive monochromatically colored elements, and then
replace each element with an Si(2, k) tuple. Since our original coloring did not contain
a k-TMAP, Lemma 2.1 tells us that our new construction will likewise contain no k-
TMAPs. We then likewise replace each of the two colors in the new construction
with their corresponding Si(3, k) tuples. Continue replacing elements with the next
tuple until you have replaced elements with Si(r, k) tuples. We know that the size of
every tuple is p and we recursively replace elements with tuples from the constructed
colorings r − 1 times.

Theorem 2.2. If p is any prime with 2 ≤ r ≤ p ≤ k, then

w(r, p + 1) > pr−12p.

This generalizes Berlekamp’s theorem [2].
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Proof. Berlekamp’s result states that w(2, p + 1) > p2p. This implies that there is a
valid 2-coloring of {1, 2, 3, . . . , p2p} that contains no k-TMAPs. By invoking Corollary
2.1, we can use Berlekamp’s result as a base case for constructing valid r-colorings
for larger r.

3 Comparing to Previously Known Bounds

Note that any known valid 2-coloring can be used to create valid r-colorings by
using the construction method found in the proof of Corollary 2.1. When r > p the
recurrence in Theorem 2.1 gives worse and worse bounds: When r ∈ {1, 2, . . . , p} we
get a new factor of p each time we increment r; when r ∈ {p + 1, p + 2, . . . , 2p} we
only get a new factor of p every other time; in general, when r ∈ {` · p + 1, ` · p +
2, . . . , (` + 1) · p}, we on average get a new factor of p every one `th of the time.

Indeed, the growth rate of the number of factors of p can be seen to be proportional
to that of harmonic numbers. In particular, if one writes r = ` · p + s where s ∈
{0, 1, 2, . . . , p − 1} and H` =

∑`
i=1

1
i
, then one can show that, for fixed k and p and

r →∞,
w(r, k) ' pp·H`+

s
`+1 (p2p) ∼ c · pp ln

r
p 2p,

for some constant c. Moreover w(r, k) > pp ln
r
p 2p. Note that when r ≥ k the bound in

Theorem 2.1 beats out Kozik and Shabanov’s bound [18], which was the best known
when r and k are similar in size.

Ours stops being best when O’Bryant and Moser-type bounds take over.

4 Bounds on Small Van Der Waerden Numbers

There are only seven known van der Waerden numbers, showing just how difficult
these problems are, both theoretically and computationally. Indeed, the last two
numbers found, that w(6, 2) = 1, 132 [12] and w(4, 3) = 76 [1], were discovered using
SAT solvers and computers specifically designed for this task. Another extensive
computational effort used the Berkeley Open Infrastructure For Network Computing
to distribute the work to 516 volunteers’ 1,760 computers in 53 countries, totaling
two teraflops of computing power for a full year. [13]

In Figure 1 we list the best known lower bounds for small values of k and r. The
numbers in bold are new or have been improved by Theorem 2.1.
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k/r 2 Colors 3 Colors 4 Colors 5 Colors 6 Colors
3− Term 9 27 76 > 170 > 225
4− Term 35 293 > 1, 048 > 2, 254 > 9, 778
5− Term 178 > 2, 173 > 17, 705 > 98, 740 > 98, 748
6− Term 1132 > 11, 191 > 91, 331 > 540, 025 > 816, 981
7− Term > 3, 703 > 48, 811 > 420, 217 > 2,941,519 > 20,590,633
8− Term > 11, 495 > 238, 400 > 2, 388, 317 > 16,718,219 > 117,027,533
9− Term > 41, 265 > 932, 745 > 10, 898, 729 > 79, 706, 009 > 557,942,063
10− Term > 103, 474 > 4, 173, 724 > 76, 049, 218 > 542, 694, 970 > 3,798,864,790
11− Term > 193, 941 > 18, 603, 731 > 329, 263, 781 > 3,621,901,591 > 39,840,917,501
12− Term > 638, 727 > 79, 134, 144 > 1, 536, 435, 264 > 16,900,787,904 > 185,908,666,944
13− Term > 1, 642, 309 > 251, 282, 317 > 5, 683, 410, 589 > 73,884,37,657 > 960,496,389,541

k/r 7 Colors 8 Colors 9 Colors
3− Term > 225 > 510 > 775
4− Term > 9,940 > 29,334 > 29,334
5− Term > 493,700 > 493,740 > 2,468,500
6− Term > 2,700,125 > 4,084,905 > 13,500,625
7− Term > 144,134,431 > 144,134,431 > 1,008,941,017
8− Term > 819,192,732 > 819,192,732 > 5,734,349,124
9− Term > 3,905,594,441 > 3,905,594,441 > 27,339,161,087
10− Term > 26,592,053,530 > 26,592,053,530 > 186,144,374,710
11− Term > 438,250,092,511 > 4,820,751,017,621 > 53,028,261,193,831
12− Term > 2,044,995,336,384 > 22,494,948,700,224 > 247,444,435,703,464
13− Term > 12,486,453,064,033 > 162,323,889,832,429 > 2,110,210,567,821,577

Figure 1: Small van der Waerden numbers

5 Concluding Remarks

In the proof of Theorem 2.1, our construction of the Si(r, k) had the property that no
two consecutive elements are ever the same color. This implies that in any coloring
that is built from the Si(r, k) tuples, there can only ever be two consecutive terms
that are the same color, which would occur only between the ends of the consecutive
blocks. Thus our construction may be applicable to Ramsey problems which demand
that a coloring avoids many consecutive monochromatic colored terms, such as the
problem introduced by Graham in [10].
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[6] P. Erdős and L. Lovász, Problems and results on 3-chromatic hypergraphs and
some related questions, Infinite and finite sets (Colloq., Keszthely, 1973; dedi-
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